Ve-ptp Modulates Vascular Integrity by Promoting Adherens Junction Maturation
نویسندگان
چکیده
BACKGROUND Endothelial cell junctions control blood vessel permeability. Altered permeability can be associated with vascular fragility that leads to vessel weakness and haemorrhage formation. In vivo studies on the function of genes involved in the maintenance of vascular integrity are essential to better understand the molecular basis of diseases linked to permeability defects. Ve-ptp (Vascular Endothelial-Protein Tyrosine Phosphatase) is a transmembrane protein present at endothelial adherens junctions (AJs). METHODOLOGY/PRINCIPAL FINDINGS We investigated the role of Ve-ptp in AJ maturation/stability and in the modulation of endothelial permeability using zebrafish (Danio rerio). Whole-mount in situ hybridizations revealed zve-ptp expression exclusively in the developing vascular system. Generation of altered zve-ptp transcripts, induced separately by two different splicing morpholinos, resulted in permeability defects closely linked to vascular wall fragility. The ultrastructural analysis revealed a statistically significant reduction of junction complexes and the presence of immature AJs in zve-ptp morphants but not in control embryos. CONCLUSIONS/SIGNIFICANCE Here we show the first in vivo evidence of a potentially critical role played by Ve-ptp in AJ maturation, an important event for permeability modulation and for the development of a functional vascular system.
منابع مشابه
VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts.
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from...
متن کاملHIF2α signaling inhibits adherens junctional disruption in acute lung injury.
Vascular endothelial barrier dysfunction underlies diseases such as acute respiratory distress syndrome (ARDS), characterized by edema and inflammatory cell infiltration. The transcription factor HIF2α is highly expressed in vascular endothelial cells (ECs) and may regulate endothelial barrier function. Here, we analyzed promoter sequences of genes encoding proteins that regulate adherens junct...
متن کاملContribution of annexin 2 to the architecture of mature endothelial adherens junctions.
The vascular endothelial cadherin (VE-cad)-based complex is involved in the maintenance of vascular endothelium integrity. Using immunoprecipitation experiments, we have demonstrated that, in confluent human umbilical vein endothelial cells, the VE-cad-based complex interacts with annexin 2 and that annexin 2 translocates from the cytoplasm to the cell-cell contact sites as cell confluence is e...
متن کاملInterfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin
Vascular endothelial (VE)-protein tyrosine phosphatase (PTP) associates with VE-cadherin, thereby supporting its adhesive activity and endothelial junction integrity. VE-PTP also associates with Tie-2, dampening the tyrosine kinase activity of this receptor that can support stabilization of endothelial junctions. Here, we have analyzed how interference with VE-PTP affects the stability of endot...
متن کاملRole of protein tyrosine phosphatase SHP2 in barrier function of pulmonary endothelium.
Pulmonary edema is mediated in part by disruption of interendothelial cell contacts. Protein tyrosine phosphatases (PTP) have been shown to affect both cell-extracellular matrix and cell-cell junctions. The SH2 domain-containing nonreceptor PTP, SHP2, is involved in intercellular signaling through direct interaction with adherens junction proteins. In this study, we examined the role of SHP2 in...
متن کامل